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CHAPTER 2. 

Introduction to time reversible, thermostatted 

dynamical systems and statistical mechanical 

ensembles 

 
“I have found it convenient, instead of considering one system of material 

particles, to consider a large number of systems similar to each other in all 

respects, except the initial circumstances of the motion, which are supposed 

to vary from system to system, the total energy being the same in all.” 

Maxwell 1879 
 

2.1 TIME REVERSIBLITY IN DYNAMICAL SYSTEMS 
 

 Consider an isolated Hamiltonian system of interacting particles.  The 

microscopic state of the system is represented by a phase space vector of the 

coordinates and canonical momenta of all the particles, in an exceedingly high 

dimensional space - phase space -  {q1,q2 ,..qN ,p1,..pN} ≡ (q,p) ≡ Γwhere qi ,pi  are 

the position and conjugate momentum of particle, i .  The equations of motion for the 

system with an autonomous Hamiltonian H (q,p) , are, 

 

 

 

qi =
∂H (q,p)

∂pi

pi = − ∂H (q,p)
∂qi

. (2.1.1) 

 

Definition 

We define the time reversal mapping, MT …, as 
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  M
TΓ ≡ MT (q,p) ≡ (q,−p) . (2.1.2) 

 

Then because the Hamiltonian for a system of interacting point particles, 

H (q,p) = pi
2 / 2m +Φ(q)∑ , is even in the momenta, we see from the equations of 

motion that 

 

  
!Γ ≡ iL(Γ)Γ=(

p
m

i
∂
∂q

,−
∂Φ
∂q

i
∂
∂p

)i q,p( ) = (p /m,−∂Φ/∂q)  (2.1.3) 

 

where    iL...≡ !Γ i ∂... ∂Γ , is the time derivative operator for phase functions and   Γ  is 

given by the equations of motion (e.g. (2.1.1)).  

 

Definition 

We refer to L  as the p or phase-Liouvillean. 

 
The formal solution of (2.1.3) is 

 
  S

tΓ ≡ exp[iL(Γ)t]Γ , (2.1.4) 

 

and  

 

 

  

  dStΓ/dt = iL(Γ)exp[iL(Γ)t]Γ= iL(Γ)StΓ

= exp[iL(Γ)t]iL(Γ)Γ= St !Γ
  (2.1.5) 

 

If we apply the time reversal map to the p-Liouvillean we see that, 

 

 

  

MTiL(Γ) ≡ MT !Γ i
∂
∂Γ

=ΜT(
p
m

i
∂
∂q

,−
∂Φ
∂q

i
∂
∂p

)

= (
−p
m

i
∂
∂q

,−
∂Φ
∂q

i
∂

∂− p
)ΜT

= iL(ΓT )MT = −iL(Γ)MT

  (2.1.6) 
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Using this result we can apply the time reversal map to a propagated phase, 
 

 

 

MT (StΓ) = exp[−iL(Γ)t]MT (Γ)

= exp[iL(ΓT )t]MT (Γ)

= StΓT

. (2.1.7) 

 

Definition  

Time reversible dynamics satisfies the equation: 

 
  M

T exp(iL(Γ)t)MT exp(iL(Γ)t)Γ = Γ  (2.1.8) 

 

To prove this we can use successive applications of (2.1.6). We note: 

 

 

 

MT exp(iL(Γ)t)MT exp(iL(Γ)t)Γ

= MT exp(iL(Γ)t)exp(−iL(Γ)t)ΓT

= MTΓT = Γ

  (2.1.9) 

 

 We will say in words what time reversibility entails. If we start at a point in 

phase space evolve that phase forward in time an amount t; reverse the signs of all the 

momenta leaving the coordinates fixed; go forward in time using the same equations 

of motion for a duration t and finally reverse all the moment once again, then we end 

up at the same point in phase space where we originally started. 

 We will add a few remarks about notation. The St  notation for the 

propagator hides much subtlety. We will only use it for the simplest problems. To 

compare the two notations we note that 

 

 

 

MT (eiL(Γ)tΓ) ≡ MTStΓ = e− iL(Γ)tM TΓ = eiL(Γ
T )tM TΓ

= eiL(Γ
T )tΓT

≡ StΓT

 . (2.1.10) 
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The convention is that the St  notation absorbs into the p-propagator, the phase to its 

right. There is no way to express  e− iL(Γ)tΓT  in the St  notation. 

 If we take the solar system and reverse all the momenta and angular 

momenta of the planets then the resulting dynamics is also a solution of the equations 

of motion.  If you watch a movie of the planets going around the sum and then play 

that movie backwards, the resulting motion is still a solution of Hamilton’s equations 

of motion. 

 However, if we do the same to the motion of a waterfall or a jet aircraft taking 

off, although the time reversed movie is in fact still a solution of the dynamical 

equations of motion, the time reversed movie of a waterfall violates the Second 

“Law” of Thermodynamics.  The time reversed movie of the jet plane would 

constitute a perpetual motion machine of the second kind, thereby also violating the 

Second Law of Thermodynamics.  This is the so-called time irreversibility paradox 

first pointed out by Kelvin and later by Loschmidt. The resolution of this paradox 

forms one of the main themes of this book. 

 If we watch the time reversed movie of the solar system, then observing the 

time reversed planetary orbits we would not see anything that would violate the 

Second “Law” of thermodynamics.  Thus the Second “Law” of Thermodynamics is 

somehow coupled to the complexity of the system.  Maxwell was the first to realise 

this point (see the quote for Chapter 3). As we will see, the Fluctuation Theorem 

proved in Chapter 3 will resolve these apparent paradoxes.  In the process the 

Fluctuation Theorem obviates the need for the Second “Law” of Thermodynamics. 
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2.2 INTRODUCTION TO TIME REVERSIBLE, THERMOSTATTED 

DYNAMICAL SYSTEMS 

 
 Most systems of thermodynamic interest are not isolated. The vast majority of 

engines, devices and all biological organelles exchange heat back and forth with their 

surroundings.  These surroundings can usually be viewed as being vastly larger than 

the engine, or the system of interest.   

 Think of the operation of an automobile engine.  Ultimately the chemical 

energy in the fuel is on average dissipated as heat to the surrounding atmosphere and 

earth. Because of the huge size ratio of the surroundings to the automobile, we can 

regard the surroundings as being unperturbed by the operation of the automobile. In 

principle the size of the surroundings can be expanded virtually without limit.  So 

sufficiently far away from the system of interest we can regard the surroundings as 

being unperturbed by the system of interest and as we shall see these unchanging 

surroundings can be regarded as being in a state of thermodynamic equilibrium. Later 

we will learn how to treat cases where the surroundings are the same size as the 

system of interest and therefore may also be out of equilibrium but for the moment we 

will consider a nonequilibrium system of interest in contact with a much larger 

equilibrium reservoir. 

 Because in Chapter 6 we will derive the Relaxation Theorem and through it 

the form of the equilibrium distribution of microstates for an N-particle system, we 

cannot employ any knowledge of that equilibrium distribution prior to Chapter 6. 

 We assume that classical mechanics gives an adequate description of the 

dynamics.  We assume that the total momentum of, the system of interest and 

separately, of the surroundings is zero.  These systems are not in motion relative to 

each other or the observer.  The microscopic state of the system is represented by a 

phase space vector of the coordinates and momenta of all the particles in an 

exceedingly high dimensional space - phase space - 

 {q1,q2 ,..qN ,p1,..pN} ≡ (q,p) ≡ Γwhere qi ,pi  are the position and conjugate 

momentum of particle, i .  

 Experimentally we can only control a small number of variables that specify 

the macroscopic state of the system.  We might only be able to control the system 

energy, the average kinetic energy of all or some of the particles, the volume V  and 
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the number of atoms in the system, N , which we assume to be constant.  There is 

therefore an enormous range of microstates that are consistent with the small number 

of macroscopic constraints. 

 In writing the microscopic equations of motion for the system it will be 

convenient to decompose the total system into two subsystems: the system of interest 

and the surroundings.  As we have said above, the surroundings may be regarded as 

being unperturbed by the system of interest. Conversely, provided the surroundings 

are not moving with respect to either the observer or the system of interest and 

provided they have an unchanging distribution of states, the precise details of the 

microscopic equations of motion or indeed the nature of the particles that constitute 

those surrounding systems, have no impact on the system of interest.  The 

surrounding particles are too small and too far from the system of interest. 

 The operation of an automobile is unaffected by the microscopic details of the 

road and atmosphere.  Only a few macroscopic properties are important: average 

chemical composition, temperature and pressure of the air etc, etc. 

 A typical experiment of interest is conveniently summarised by the following 

example.  Consider an electrical conductor (a molten salt for example) subject, at say 

t = 0 , to an applied electric field, E .  We wish to understand the behaviour of this 

system from an atomic or molecular point of view. As in a laboratory, the molten salt 

is contained in a solid electrically insulating conduction cell and this cell is allowed to 

exchange heat with the much larger surroundings so that the average kinetic energy of 

the particles is constant. 

 If we use purely Hamiltonian equations of motion the entire system will 

eventually heat up. We will need to supplement the Hamiltonian equations of motion 

with some time reversible non-Hamiltonian terms buried deep in the surroundings so 

that a true nonequilibrium steady state is possible. The work that is done on the 

system is on average converted into heat which is conducted through the system of 

interest and the walls eventually being removed on average by these non Hamiltonian 

terms in the remote boundaries. Because these non-Hamiltonian terms are physicaly 

remote from the system of interest there is no way that the system of interest can 

“know” how the heat is eventually removed. 

The first time-reversible, deterministic thermostats and ergostats were 

invented simultaneously but independently by Hoover and Evans in the early 1980’s. 
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Prior to this development there was no satisfactory mathematical way of modelled 

thermostatted, nonequilibrium steady states. 

 We could study the macroscopic behaviour of the macroscopic system by 

taking just one of the huge number of microstates that satisfy the macroscopic 

conditions, and then solving the equations of motion for this single microscopic 

trajectory.  We could then compute time averages, At , of a phase function,  A(Γ) : 

 

 
 
At ≡

1
t

ds
0

t

∫ A(SsΓ) . (2.2.1) 

 

 However, we would have to take care that our microscopic trajectory StΓ , 

was a typical trajectory and that it did not behave in an exceptional way.  Perhaps a 

better way of understanding the macroscopic system would be to select a set of 

� 

NΓ  

initial phases (i.e. microstates) {Γ j , j = 1,...NΓ}  distributed according to the naturally 

occurring states that are consistent with the small number of macro-constraints and 

compute the time dependent properties of the macroscopic system by taking a time 

dependent ensemble average 

� 

A(t)  of a phase function 

� 

A(Γ)  over  

the ensemble of time evolved phases A(t) = lim
NΓ→∞

A(StΓ j )
j=1

NΓ

∑ / NΓ . Indeed repeating 

the experiment with initial states that are consistent with the specified initial 

conditions is often what an experimentalist attempts to do in the laboratory.  One 

could then try to compute the initial phase space density normalized to unity  f (Γ;0)  

and try to understand the time dependent evolution of this density  f (Γ;t) . Time 

dependent averages of phase functions could then be computed a time dependent 

ensemble average: 

 

 
 
A(t) = dΓ A(Γ) f (Γ;t) =∫ dΓ A(StΓ) f (Γ;0)∫ . (2.2.2) 

 

The equality of the average over the initial distribution with that taken over the time 

dependent distribution is guaranteed by the fact that the normalization of the 

distribution function is always unity, independent of time. Although the concept of 

ensemble averaging seems natural and intuitive to experimental scientists, the use of 
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ensembles has caused some problems and misunderstandings from a more purely 

mathematical viewpoint.   

Definition 

A system is said to be time stationary if the time averages appearing in (2.2.2) 

become independent of time either for all times or in the long time limit. 

Definition 

A stationary system is said to be ergodic if the time average of a reasonably smooth 

phase function along a trajectory that starts almost any where in the ostensible phase 

space, is equal to the ensemble average taken over an ensemble of systems consistent 

with the small number of macroscopic constraints on the system. 

 

 
 
A = lim

t→∞
At =

1
t

ds
0

t

∫ A(SsΓ), ∀Γ(0)  (2.2.3) 

 

 Experience shows that for an isolated Hamiltonian system of interacting 

particles with no applied dissipative fields, the system will usually relax to a time 

stationary state where time averages of almost all macroscopic variables such and 

pressure or density become time independent.  That state is called the state of 

microcanonical equilibrium.  Similarly if a Hamiltonian system free of applied 

dissipative fields (like electric field for electrically conductive systems) which is 

allowed to exchange heat with a vastly larger heat bath which itself can be considered 

to be at equilibrium, then at long times the Hamiltonian system will be expected to 

relax to the canonical equilibrium state.  Later, in Chapter 5 of this book we will 

(subject to some fairly simply stated mathematical conditions) prove the Equilibrium 

Relaxation Theorem which shows that initial nonequilibrium systems will at long 

times relax, perhaps non-monotonically to an ergodic state of thermodynamic 

equilibrium.  That same Theorem also gives precise mathematical expressions for the 

equilibrium phase space distributions, both canonical and microcanonical.  

 Ensembles are well known to equilibrium statistical mechanics, the concept 

being first introduced by Maxwell in 1879.  The use of ensembles in nonequilibrium 

statistical mechanics is less widely known and understood.1   For our experiment it 

will often be convenient to choose the initial ensemble that is represented by the set of 

                                                
1 For further background information on nonequilibrium statistical mechanics see [16] 
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phases {Γ j , j = 1,...NΓ} , to be one of the standard ensembles of equilibrium statistical 

mechanics.  However, sometimes we may wish to vary this somewhat.  In any case, in 

all the examples we will consider, the initial ensemble of phase vectors will be 

characterised by a known initial N-particle distribution function,  f (Γ;0) , which gives 

the probability,  f (Γ;0)dΓ , that a member of the ensemble is within some 

infinitesmal neighbourhood 

� 

dΓ  of a phase 

� 

Γ  at time 0, when the experiment began. 

By construction the number of ensemble members is conserved. 

 Consider an electric field that on average, does work on an electrically 

conducting system causing an electric current,  I ≡ ci qi∑ , to flow ( ci  is the electric 

charge on particle i).  To remove the complicating effects of space charge build up or 

surface electrolysis we employ periodic boundary conditions in the direction of the 

electric filed. This allows the current to flow forever and also allows for the 

possibility of establishing a nonequilibrium time stationary, or steady, state.  

It is exceedingly important to remember that we are expressly excluding the 

case where the system is an insulator and the field induces a polarization rather than a 

current! The difference between an insulator and a conductor can only be determined 

by the physics of the situation.  If we subject sodium chloride to an electric field at 

room temperature then the field induces a polarization that changes the internal 

energy of the system.  Electrostatic potential energy is stored in the system. If we 

make the single change of increasing the temperature of sodium chloride to 1000K 

then sodium chloride melts and becomes an electrical conductor. The electric field 

does not change the internal energy of the system. So the difference between an 

insulator and a conductor cannot be determined from the equations of motion (i.e. 

from the Hamiltonian)! The difference can be in the initial conditions for the 

equations of motion – in this case the initial energy or temperature. We will treat the 

case where fields change the internal energy of the system in Chapter 8. Until then 

external fields are assumed to only be dissipative, and do not change the internal 

energy of systems. 

 

Definition 

 If external fields are applied to the system of particles and the external field 

does work on the system and if that work can be turned completely into heat that then 

can diffuse out of the system, the external field is termed a dissipative field.  If the 
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work can be completely stored in the system in the form of potential energy, the 

external field is termed nondissipative.  

An example of the latter could be to slowly strain an elastic solid.  The work is 

stored in the intermolecular potential energy of the solid’s constituent molecules. If 

you change the temperature of a system so that a system undergoes a phase change 

from a solid to a liquid, the same strain field can change from being nondissipative to 

being dissipative. 

 We expect that at an arbitrary time t, after the field has been applied, the 

ensemble averaged electric current I(t)  will be in the direction of the field; that 

work performed on the system by the field will be transformed into (or dissipated as) 

heat – Ohmic heating, I(t) •E .  It will frequently be the case that the electrical 

conductor will be in contact with an electrically insulating, heat reservoir that fixes 

the average energy of the system so that on average heat flows from the system of 

interest, the conduction cell, towards the much larger heat reservoir.  Nonetheless all 

the particles in this system (conduction cell plus reservoir) constitute a time reversible 

dynamical system. 

 

We are interested in a number of problems suggested by this experiment: 

1. How do we reconcile the Ohmic heating, with the time reversibility of the 

microscopic equations of motion?  Why isn’t there the possibility of Ohmic cooling? 

2. For a given initial phase Γ j  that generates some time dependent current 

 I j (S
tΓ j ) , can we generate Loschmidt’s conjugate antitrajectory which has a time 

reversed electric current with time-reversed time ordering? 

3. Is there anything we can say about the deviations of the behaviour of 

individual ensemble members, from the average behaviour? 

In noting these three questions, question 2 is slightly different from what is 

usually mentioned in textbooks that treat reversibility. For the antitrajectory not only 

is the current the opposite sign to that for the conjugate trajectory but the time ordered 

fluctuations and transients must exhibit time-reversed time ordering.  The last 

temporal fluctuations that occur on a particular trajectory, are in fact the first 

fluctuations on the conjugate antitrajectory.  This, as we will see in Chapter 7, is 

hugely important. 
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 Consider a classical system of N interacting particles in a volume V.  

Initially (at t = 0), the microstates of the system are distributed according to a given 

normalized probability distribution function f (Γ;0) .  To apply our results to realistic 

systems, we separate the N particle system into a system of interest and a wall 

thermostatting region containing NW  particles.  Note: the system of interest may 

contain unthermostatted wall particles. Within the thermostat, Nth  particles are 

subject to a fictitious thermostat or ergostat.  The thermostat employs a switch, 

Si = 1,0 , which controls how many and which particles are thermostatted, 

Si = 0; 1≤ i ≤ (N − Nth ) , Si = 1;(N − Nth +1) ≤ i ≤ N ,Nth ≤ NW .  We define the 

thermostat kinetic energy as 

 

 Kth ≡ Si
p2i
2mii=1

N

∑ . (2.2.4) 

 

and write the equations of motion for the composite N-particle system as 

 

 

  

!qi =
pi
mi

+Ci (Γ) iFe

!pi = Fi (q)+Di (Γ) iFe − Si (αpi + γ th )

!α = 2Kth

3(Nth −1)kBTth
−1

⎡

⎣
⎢

⎤

⎦
⎥
1
τ 2
,

 (2.2.5) 

 

where Fi (q) = −∂Φ(q) / ∂qi  is the interatomic force on particle i, Φ(q)  is the 

interparticle potential energy,  Ci (Γ),Di (Γ)  are tensorial phase functions that couple 

the dissipative field to the system of interest. 

 The term involving, −Siαpi  is a deterministic time reversible Nosé-Hoover 

thermostat [19] used to add or remove heat from the particles in the reservoir region 

through introduction of an extra degree of freedom described by α, Tth is a target 

parameter that controls the time averaged kinetic energy of the thermostatted 

particles, and τ is the time constant for the integral feedback mechanism of the Nosé-
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Hoover thermostat.  If 2Kth > 3(Nth −1)kBTth  then  α > 0  and the thermostat multiplier 

will decrease implying that in the future less energy will be removed from the 

thermostat particles. Conversely if 2Kth < 3(Nth −1)kBTth  then  α < 0 implying that 

more energy will be removed from the thermostat in the future. Thus the thermostat 

tends to stabilize the average thermostat kinetic energy at the value 

Kth = 3(Nth −1)kBTth / 2 .   

 It is a trivial matter to check that the Nosé-Hoover thermostatted equations of 

motion are time reversal symmetric. From the third equation in (2.2.5) we see that  !α  

is even under time reversal. This means that α  is odd implying that the whole 

thermostatting term in the  !p  equation of motion is even as of course is the force. 

Assuming that the system comes to a nonequilibrium steady state where at 

long times time averages of smooth phase functions become time independent we also 

expect there will be a time independent value for the thermostat multiplier 

 
lim
t→∞

α (t) = α ∞ ⇒ lim
t→∞
α (t) = 0 . From (2.2.5) we see that in this steady state 

 

 lim
t→∞

ds
0

t

∫ Kth (s)

t
= Kth = 3(Nth −1)kBTth / 2  (2.2.6) 

 

In Chapter 5 we will prove that if the dissipative field is in fact zero and the system is 

T-mixing, the system described by (2.2.5) eventually comes to thermodynamic 

equilibrium and the target temperature of the Nosé-Hoover thermostatTth , is then 

identical to the equilibrium thermodynamic temperature of the system. When the 

dissipative field is nonzero the thermodynamic temperature of the system of interest is 

in fact undefined.  However in this case if the thermal reservoirs are made arbitrarily 

large compared to the system of interest the thermal reservoirs will be hardly affected 

by the system of interest and in this case Tth  can be regarded as the equilibrium 

thermodynamic temperature of the thermal reservoir.  For an in depth discussion of 

the Nosé-Hoover thermostat see §5.2 of Evans and Morriss.   

 One might wonder whether other mathematical forms are possible for the 

thermostat. Could one replace a thermostat of the form  p = F −αp  with a so-called 

µ -thermostat:  !p = F −α p µ−1p ? It turns out that if µ ≠ 1 , these systems can never 
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relax to equilibrium. Consequently we do not consider these µ ≠ 1 , thermostats any 

further. 

 In equations (2.2.5) the fluctuating force γ th =
1
Nth

SiFii=1

N∑  ensures that the 

macroscopic momentum of the thermostatted particles is a constant of the motion, 

which we set to zero.  Normally  Ci (Γ),Di (Γ) = 0  when Si = 1 .  This means the 

dissipative field cannot do work on the thermostatting particles. Note however, that 

the choice of thermostat is reasonably arbitrary, e.g. we could use some other choice 

of time reversible deterministic thermostat, such as one obtained by use of Gauss’ 

Principle of Least Constraint [19] to fix Kth , and arrive at essentially the same results.   

 In order to simplify the notation we introduce an extended phase space vector 

 Γ
* ≡ (Γ,α )  and from here on represent this implicitly using Γ .   

Definition 

In the absence of the thermostatting terms the (Newtonian) equations of motion 

preserve the phase space volume,  Λ ≡ (∂ ∂Γ) i !Γ ad = 0 : a condition known as the 

adiabatic incompressibility of phase space, or AIΓ   [14].  The equations of motion for 

the particles in the system of interest are quite natural.  The equations of motion for 

the thermostatted particles are supplemented with unnatural thermostat and force 

terms.  Equations (2.2.5) are time reversible and heat can be either absorbed or given 

out by the thermostat.  Similar constructions have been applied in various studies (see, 

for example, [16, 20]).  Of course, if Si = 1  for all i, we obtain a homogeneously 

thermostatted system that is often studied [19]. 

 The model system could be quite realistic with only some particles subject to 

the external field. For example, some particles might be charged in an electrical 

conduction experiment, while other particles may be chemically distinct being solid at 

the temperatures and densities under consideration.  Furthermore these particles may 

form the thermal boundaries or walls which thermostat and “contain” the electrically 

charged particles fluid particles inside a conduction cell.  In this case 

� 

Si  = 1 only for 

wall particles and 

� 

Si = 0  for all the fluid particles.  This would provide a realistic 

model of electrical conduction.  
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 In other cases we might consider a homogeneous thermostat where Si = 1,∀i .  

It is worth pointing out that as described, equations (2.2.5) are time reversible and 

heat can be both absorbed and given out by the thermostat. 
 

Definition 

If we consider a group of atoms within some small volume δV centred on a position 

r,  the local mass density ρ(r)  is defined as 

 

 ρ(r) ≡ mi
i∈δV
∑ /δV  (2.2.7) 

 
and the local streaming velocity u is defined by the equation 

 
 pi

i∈δV
∑ ≡ ρ(r)u(r)  (2.2.8) 

 

where pi  is the momentum of particle i, measured in the laboratory frame.  Adjusting 

the physical size of the volume δV  adjusts the special resolution within which we 

measure local properties.  

 
Definition 

If the momenta and velocities are computed relative to the local streaming velocity (ie 

pi − miu(ri ), v i − u(ri ) ) they are termed peculiar momenta and velocities 

respectively. 

 The use of peculiar momenta in the expressions for the kinetic temperature 

and the internal energy is important. All thermodynamic variables must be 

independent of the velocity of the frame of reference from which they are measured.  

For instance if we consider a glass of water in a moving train, the total energy of the 

molecules comprising the glass of water is dependent on the velocity of the train. 

However the internal energy and the kinetic temperature are independent of the 

motion of the train.  All thermodynamic quantities must be evaluated using momenta 

and velocities measured in the local streaming velocity frame of reference. In writing 

(2.2.5) we chose the fluctuating force γ th  to make the momentum of the thermostat a 

constant of the motion with the value zero. This means that the average momentum of 
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the entire system is also zero ensuring that all the momenta appearing in (2.2.5) are in 

fact peculiar. 

 

Definition 

For systems with no applied external field or for which the external field is 

dissipative, the Hamiltonian H0 ≡ [pi
2 / 2m +1 2 Φ(q)

j
∑

i:Si =1
∑ ]  expressed in peculiar 

momenta, pi , has an average value that is the thermodynamic internal energy of the 

system. The internal energy is just the energy of the system with the local streaming 

kinetic energy removed. This thermodynamic quantity is completely mechanical – as 

the so-called first “law” of thermodynamics shows. The definition of the internal 

energy is valid even far from equilibrium provided the streaming velocity (2.2.8) is 

well defined. 

  An alternative thermostatting mechanism is to choose the thermostat 

multiplier α  to make either the internal energy of the thermostat 

H0 ≡ [pi
2 / 2m +1 2 Φ(q)

j
∑

i:Si =1
∑ ] , or of the entire system a constant of the motion.  

For this ergostatted dynamics, the thermostat multiplier, α, is chosen as the 

instantaneous solution to the equation, 

 

 

  

!H0 (Γ) ≡ −J(Γ)V iFe − 2KW (Γ)α (Γ)

≡ −J(Γ)V iFe − !Q

= 0

. (2.2.9) 

 

Definition 

The heat added to the thermostat per unit time  Q(t)  is defined in equation (2.2.9). 

[Aside: When the thermostat is overwhelmingly larger than the system of interest and 

when it is in thermodynamic equilibrium the thermostat increases its entropy at a rate 

 
Sth = Q /Tth .] 

A third thermostatting mechanism is where we make the peculiar kinetic 

energy of the thermostat  
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 Kth ≡ pi
2 / 2m

Si =1
∑ = (3Nth − 4)kBTth / 2 ,  (2.2.10) 

 
a constant of the motion; in which case we speak of isokinetic dynamics. In (2.2.10) 

Nth = Si∑ . 

 

Definition 

The quantity Tth  defined by (2.2.10) is called the kinetic temperature of the 

thermostat. 

 Both of these latter thermostatting methods involve differential feedback and 

the equations of motion can be derived using Gauss’ Principle of Least Constraint to 

fix either the internal energy or the thermostat peculiar kinetic energy.  In both cases 

the first two equations of (2.2.5) still apply but the third equation in (2.2.5) is replaced 

by an explicit expression for the multiplier. These Gaussian thermostats were in fact 

the first time-reversible deterministic thermostats. Hoover developed the isokinetic 

thermostat while Evans (simultaneously) developed  the ergostat. It is a trivial matter 

to check that these thermostats are time reversal symmetric. We note from (2.2.9) that 

as in the Nosé-Hoover thermostat, α  is odd under time reversal. 

 

Definitions 
The dissipative flux  J due to the driving dissipative field, Fe is defined as, 
 

 
  
!H0
ad ≡ −J(Γ)V iFe ≡ − [pi m iDi − Fi iCi∑ ] iFe , (2.2.11) 

 

� 

˙ H 0
ad  is the adiabatic time derivative of the internal energy (i.e. it is computed without 

the contributions from the thermostat)  and V is the volume of the system.  It is 

always assumed that the equations of motion for the driven system satisfy the 

adiabatic incompressibility of phase space condition. In Chapter 6, we will show in 

detail why the dissipative flux is so-named. 

 

Definitions 

The adiabatic time derivative of H0  is in fact the work performed on the system by 

the dissipative field because it the total change of energy minus the heat removed by 

the thermostat/ergostat. 
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 Equation (2.2.6) is a statement of the First Law of Thermodynamics for an 

ergostatted nonequilibrium system.  The energy removed from (or added to) the 

system by the ergostat must be balanced instantaneously by the work done on (or 

removed from) the system by the external dissipative field, 

� 

Fe .  For ergostatted 

dynamics we solve (1.2.3) for the ergostat multiplier and substitute this phase 

function into the equations of motion.  For isokinetic dynamics we solve an equation 

which is analogous to (1.2.3) but which ensures that the kinetic temperature of the 

walls or system, is fixed [16].  The equations of motion (2.2.5) are reversible where 

the thermostat multiplier is defined in this way (2.2.7). 

 A simple example system is the case of electrical conductivity.  There we 

could model the charged ions of a molten salt (Ci = 0,Di = ciIwhere ci  is the electric 

charge of particle i) subject to an electric field, Fe = E . We could surround these ions 

with neutral atoms ( ci = 0 ) of a solid wall that contains the electrically conducting 

molten salt.  Further, outside these realistically modelled wall particles we could then 

have a layer of thermostatted or ergostatting electrically neutral, wall particles.  These 

thermostatting particles can be located arbitrarily far from the system of interest. 

 One might object that our analysis is compromised by our use of these 

artificial (time reversible) thermostats.  Since, the thermostat can be made arbitrarily 

remote from the system of physical interest [17], the system cannot ‘know’ the precise 

details of how the heat is ultimately removed.  This means that the results obtained for 

the system using our simple mathematical thermostat must be the same as the those 

we would infer for the same system surrounded (at a distance) by a real physical 

thermostat (say with a huge heat capacity).  These mathematical thermostats may be 

unrealistic, however in the final analysis they are very convenient but ultimately 

irrelevant devices.  Importantly, they allow us to do the mathematical bookkeeping 

that is necessary in the study of systems that exchange heat with their surroundings.  

Ultimately the work that is on average performed on the system of interest is 

ultimately on average, transformed into heat that is absorbed by an infinitely large 

system that can be regarded as being arbitrarily close to thermodynamic equilibrium, 

arbitrarily far from the system of interest.  That reservoir has a known kinetic 

temperature which as we will see in chapter 5 is the equilibrium thermodynamic 

temperature of that reservoir. 
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2.3 EXAMPLE: HOMOGENEOUSLY THERMOSTATTED SLLOD 

EQUATIONS FOR PLANAR COUETTE FLOW 

 
A very important dynamical system is the standard model for thermostatted 

planar Couette flow – the so-called SLLOD equations for shear flow.  Consider N 

particles under shear.  In this system the external field is the shear rate,  ∂ux / dy = γ (t)  

(the y-gradient of the x-streaming velocity, ux ).  The equations of motion for the 

particles are given by the so-called homogeneously thermostatted SLLOD equations, 

 
  qi = pi /m + i γ yi , pi = Fi − i γ pyi −αpi . (2.3.1) 

 

Here, i is a unit vector in the positive x-direction.  At low Reynolds number where a 

planar velocity profile is expected to be stable, the SLLOD momenta are in fact 

peculiar momenta (i.e. they are measured relative to the average streaming velocity of 

the individual particles,  u(qi ,t) = i γ yi ).  

 As first pointed out be Evans and Morriss in 1984, the adiabatic SLLOD 

equations of motion give an exact description of planar Couette flow arbitrarily far 

from equilibrium. This is because the adiabatic SLLOD equations for a step function 

strain rate  ∂ux (t) / ∂y = γ (t) = γΘ(t) , are equivalent to Newton’s equations after the 

impulsive imposition of a linear velocity gradient at t = 0 (i.e. 

 dqi (0
+ ) / dt = dqi (0

− ) / dt + i γ yi (0)  [16]. There is thus a remarkable subtlety in the 

SLLOD equations of motion.  If one starts at t = 0-, with a canonical ensemble of 

systems then at t = 0+, the SLLOD equations of motion transform this initial ensemble 

into the local equilibrium ensemble for planar Couette flow at a shear rate  γ .  

 Because the effects of thermostatting are asymptotically quadratic in the strain 

rate, the homogeneously thermostatted SLLOD equations of motion give an exact 

description of the linear response of a system to planar Couette flow – even a time 

dependent planar Couette flow. For a mathematical proof see Evans and Morriss. 

 At low Reynolds number, the SLLOD momenta, pi, are peculiar momenta and 

α is determined using Gauss's Principle of Least Constraint to keep the internal 

energy, H0 = pi
2 / 2m +Φ(q)∑ , fixed [16] (Note: the internal energy is the sum of 
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the peculiar kinetic energy and the potential energy. It is not the sum of the laboratory 

kinetic energy and the potential energy.).  Thus, for our system (2.3.1) 

 

 

 

!H 0 = !pi i
∂K
∂pi

∑ + !qi i
∂Φ
∂qi

− 2K(p)α

= −iγ∑ pyi i
pi
m

− i !γ yi iFi − 2K(p)α

= − !γ
pyi pxi
m

+ yiFxi∑ − 2K(p)α ≡ − !γ PxyV − 2K(p)α

  (2.3.2) 

 

where Pxy  is the well known expression for the xy-element of the pressure tensor in a 
homogeneous system. We can fix the internal energy of the system by choosing α  as: 
 
  α = −Pxy !γV / 2K(p) , (2.3.3) 

 

The xy-element of the pressure tensor, is the dissipative flux, J [16].  From the 

equations of motion we can see that the rate of change of internal energy for for 

isoenergetic SLLOD dynamic is: 

 

  
H0 = −Pxy γV − 2Kα = −Pxy γV − Q = 0  

 

Thus the ergostat increases the internal energy of the system at a rate  − Q , that is 

precisely and instantaneously equal to the rate at which work is expended on the 

system by the shearing deformation namely  −Pxy γV  

 The corresponding isokinetic form for the thermostat multiplier is, 

 
 

 

 

α =
Fi •pi − γ pxi pyi /m

i=1

N

∑
i

N

∑

pi
2

i=1

N

∑ /m
. (2.3.3) 

 

 We note there are obviously Nosé-Hoover thermostatted forms for the SLLOD 

equations but we do not give these here. 
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 If the thermostatted SLLOD system comes to a nonequilibrium steady state 

the time average rate of shearing work that is performed by the shear on the system is 

equal to the time average rate at which heat is removed by the thermostat from the 

system.  If the system is ergostated this balance is achieved instantaneously. 

 The ergostatted and thermostatted SLLOD equations of motion 

((2.3.1),(2.3.2), (2.3.3)) are time reversible [16].  In the weak flow limit these 

equations yield the correct Green-Kubo relation for the linear shear viscosity of a 

fluid [16].  We have also proved that in this limit, the linear response obtained from 

the equations of motion or equivalently from the Green-Kubo relation are identical to 

leading order in N the number of particles.  In the far from equilibrium regime, Brown 

and Clarke [20] have shown that the results for homogeneously thermostatted SLLOD 

dynamics are indistinguishable from those for boundary thermostatted shear flow, up 

to the limiting shear rate above which a steady state for boundary thermostatted 

systems is not stable2 . 

 In computer simulations if one wants to carry out nonequilibrium molecular 

dynamics simulations one has to supplement the SLLOD equations of motion with 

appropriate boundary conditions – you cannot simulate infinite systems. If you start 

with a cubic periodic system at t=0, then the shear motion causes the unit cells above 

and below the primitive cell will slide to the right and left above and below the 

primitive cell at constant speeds  V
1/3 !γ . These cells move to positions  ±V

1/3 !γ t . The 

positions of these cells affects the forces Fi  on the N particles in the primitive cell. 

This means that for finite periodic systems the SLLOD equations of motion as 

implemented are in fact non-autonomous!  

In practice for the short range forces like Lennard-Jones or WCA forces these 

non-autonomous effects can be hard or near impossible to observe in 3 dimensional 

systems where N ≥~100 . In working with small systems the non-autonomous effects 

can be easily observed particularly close to the freezing density. 

                                                
2 Dissipation is extensive  = O(N) while entropy absorption by the thermostat  = O(N 2/3 ).  So for any 
given system there is a limiting shear rate beyond which boundary thermostatting is not possible. 
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2.4 PHASE CONTINUITY EQUATION 
 
 We have introduced the phase space distribution function,  f (Γ;t) .  It gives the 

probability per unit phase space volume, of finding ensemble members near the phase 

vector  Γ , at time t.  

There is a simple exact equation of motion for this density.  That equation is 

called the Phase Continuity Equation (Gibbs 1901). [In most text books this equation 

is called the Liouville Equation. In fact Liouville’s 1838 paper doesn’t refer to the 

phase space density at all. This is because the concept of a statistical mechanical 

ensemble hadn’t been developed at this early date.]   

The proof of the Phase Continuity equation 

 

 
  

df (Γ,t)
dt

= − f (Γ,t) ∂
∂Γ

i !Γ(Γ)  (2.4.1) 

 

is identical to the proof of the mass continuity equation for a compressible fluid.  Both 

equations express the fact that the total mass of a compressible fluid or the total 

number of ensemble members in phase space, is conserved. The total number  NΓ  of 

ensemble members inside an enclosing phase space volume,  VΓ  must be related to the 

total integrated flux taken over the enclosing surface,  SΓ  . 

 

 

  

dNΓ
dt

= dΓ
VΓ
∫

∂f (Γ,t)
∂t

= − dSΓSΓ∫ i Γf (Γ,t)

= − dΓ
VΓ
∫

∂
∂Γ

i[ Γf (Γ,t)]

 (2.4.2) 

 

Since this equation is true for arbitrary phase space volumes  VΓ  we see that 

 

 
  

∂ f (Γ;t)
∂t

= − ∂
∂Γ

i [ !Γf (Γ;t)]  (2.4.3) 
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Use of the chain rule then yields the streaming equivalent form of the Phase 

Continuity equation given above.  For isolated systems that do not exchange heat with 

their surroundings, the streaming derivative of the N-particle distribution function is 

identically zero.  For thermostatted systems the phase space expansion factor Λ  is for 

isokinetic or isoenergetic systems – see A2 

 

 
  
Λ ≡ ∂

∂Γ
i !Γ = −(DCNW −1)α . (2.4.4) 

 

Definition 

 In order to carry out symbolic calculations of the time dependent N-particle 

distribution function it is convenient to define the f-Liouvillian  L  where 

 

 
   
∂
∂Γ

i [ !Γ...]≡ iL...   (2.4.5) 

 
[We note in passing that while Liouville never discussed phase space density as 

required in the phase continuity equation he did discuss, in a different notation, what 

we call the p-Liouvillean.] Using this operator we see that the phase continuity 

equation can be written as 

 

 
  
∂ f (Γ;t)

∂t
= −iLf (Γ;t)   (2.4.6) 

 

This equation has a formal solution 

 

   f (Γ;t) = exp[−iLt] f (Γ;0)   (2.4.7) 

 

The correctness of this solution can be checked by differentiation. 

 If we return to (2.4.3) we see that 
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df (Γ;t)
dt

= ∂ f (Γ;t)
∂t

+ !Γ(Γ) i ∂ f (Γ;t)
∂Γ

= − ∂
∂Γ

i [ !Γ(Γ) f (Γ;t)]+ !Γ(Γ) i ∂ f (Γ;t)
∂Γ

= − f (Γ;t) ∂
∂Γ

i !Γ(Γ) = − f (Γ;t)Λ(Γ),∀Γ∈D

  (2.4.8) 

 
If we set  Γ→ StΓ  we obtain  

 

 
 

df (StΓ;t)
dt

= −Λ(StΓ) f (StΓ;t) . (2.4.9) 

 

Definition 

This equation (2.4.9) is termed the streaming or Lagrangian form of the phase 

continuity equation. For a given initial phase  Γ  (2.4.9) is a simple first order ordinary 

differential equation for the density along the phase space trajectory. Its solution can 

be written as 

 

 
 
f (StΓ;t) = exp[− ds

0

t

∫ Λ(SsΓ)] f (Γ;0)    (2.4.10) 

 

The correctness of which can easily be checked by differentiation: 

 df (S
tΓ;t) / dt = −Λ(StΓ) f (StΓ;t) . So the distribution function at time t at the 

streamed position of the phase vector originating at  Γ  is related to the path integral of 

the phase space expansion factor along the phase space trajectory.  

 We could also consider the time dependence of the measure of an infinitesimal 

phase space volume  dVΓ(S
sΓ)  centred on the streamed position  SsΓ :0 ≤ s ≤ t  along 

the phase space trajectory. This phase space volume contains a fixed number of 

ensemble members and obeys the following equation of motion: 

 

 
 
dVΓ(S

tΓ) = exp[ ds
0

t

∫ Λ(SsΓ)]dVΓ(Γ)   (2.4.11) 
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 In nonequilibrium steady states, experience shows that the time average value 

of the thermostat multiplier is positive and therefore the time average phase space 

expansion factor is negative. This implies that for almost every initial phase space 

vectoror the streamed density  f (S
tΓ;t) ~ exp[αt] f (Γ;0)→ +∞  while the 

corresponding streamed phase space volume goes to zero exponentially in time. 

 
Definition 

 We are now in a position to compute ensemble averages, B(t)  of an 

arbitrary integrable phase function  B(Γ)   

 
 

 
B(t) ≡ dΓ B(Γ) f (Γ;t) = dΓ B(StΓ) f (Γ;0)∫∫   (2.4.12) 

 

Physically this equation is rather obvious. We can formally prove the correctness of 

this equation by noting that by integrating by parts: 

 
 
 

  
dΓ f (Γ;t)iLB(Γ)∫ = − dΓ B(Γ)iLf (Γ;t)∫ , (2.4.13) 

 

from which we deduce that 

 

 

  

B(t) = dΓ∫ B(Γ)exp[−iLt] f (Γ;0)

= dΓ∫ f (Γ;0)exp[iLt]B(Γ)

≡ dΓ f (Γ;0)∫ B(StΓ)

  (2.4.14) 

 

We note that if the system satisfies the AI Γ  condition and if there are no thermostats 

applied then Λ = 0 ,  L = L  and the single Liouville operator is Hermitian. For 

thermostatted systems the f- and p-Liouvilleans are not in fact equal. 

 Finally we note that all phase space integrals given above should be carried 

out over some specified phase space domain. We have omitted this for simplicity but 

if one wants to verify these equations e.g. (2.4.9) by integrating by parts then the 

specification of this domain is essential.  
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2.5 LYAPUNOV INSTABILITY AND STATISTICAL MECHANICS 
 
 In this section we give the briefest of introductions to an entire new field of 

research. Many statements are made without proof. To fill out the details would fill 

another book. This interested reader should consult the references cited in this section.  

 We include this material because without some knowledge of the 

dimensional reduction processes in time reversible deterministic steady states, the 

reader will be puzzled by many apparent contradictions. How can it be that in a 

nonequilibrium steady state the entropy is not time independent but instead decreases 

at a constant average rate towards negative infinity? 

 The Lyapunov exponents are used in dynamical systems theory to 

characterise the stability of phase space trajectories.  If one imagines two systems that 

evolve in time from phase vectors  Γ1,Γ2  that initially are very close together 

 Γ1 −Γ2 ≡ δΓ → 0 , then one can ask how the separation between these two systems 

evolves in time.  Oseledec’s Theorem says for nonintegrable systems under very 

general conditions, that the separation vector asymptotically grows or shrinks 

exponentially in time.  Of course this does not happen for integrable systems, but then 

again very few systems are integrable.  A system is said to be chaotic if the separation 

vector asymptotically grows exponentially with time.  Most systems in Nature are 

chaotic: the world weather and high Reynolds Number flows are chaotic.  In fact all 

systems that obey thermodynamics are chaotic.   

 In 1990 the first of a remarkable set of relationships between phase space 

stability measures (i.e. Lyapunov exponents) and thermophysical properties were 

discovered by Evans, Cohen and Morriss [21] and separately by Gaspard and Nicolis 

[22].  More recently Lyapunov exponents have been used to assign dynamical 

probabilities to the observation of phase space trajectory segments [14, 15, 23].  This 

is something quite new to statistical mechanics where hitherto probabilities had been 

given (only for equilibrium systems!), on the basis of the value of the Hamiltonian 

(i.e. the weights are static). 

Suppose the autonomous equations of motion (1.2.1), are written 

 
   

!Γ = !Γ(Γ) .  (2.5.1) 
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Definition 

It is trivial to see that the equation of motion for an infinitesimal phase space 

separation vector, 

� 

dΓ , can be written as: 

 
   d !Γ = T(Γ) i dΓ   (2.5.2) 

 
where   T ≡ ∂ !Γ(Γ,t) ∂Γ  is the stability matrix for the flow.   

Definition 

The propagation of the tangent vectors is therefore given by, 

 
   dS

tΓ = Ξ(Γ;t) i dΓ  (2.5.3) 

 
where the tangent vector propagator is: 
 

 
 
Ξ(Γ;t) = expL ds T(SsΓ)

0

t

∫( )  (2.5.4) 

 
and expL  is a left time-ordered exponential.  The correctness of (2.5.4) can be 

checked by differentiation. The time evolution of these tangent vectors are used to 

determine the Lyapunov spectrum for the system.  The Lyapunov exponents thus 

represent the rates of divergence of nearby points in phase space. 

If  dΓi  is an eigenvector of   Ξ
T (Γ;t) iΞ(Γ;t)  and if the Lyapunov exponents 

are defined as [24]: 

 

 
  
λi; i = 1,..2DCN{ } ≡ lim

t→∞

1
2t
ln eigenvalues ΞT (Γ;t) iΞ(Γ;t)( )( ) , (2.5.5) 

 
then the Lyapunov exponents describe the growth rates of the set of orthogonal 

tangent vectors (eigenvectors of ΞT (t) •Ξ(t)( ) ),  {dΓi (t);i = 1,2dCN} ,  
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lim
t→∞

1
2t
ln
dStΓi i dS

tΓi

dΓi i dΓi

= lim
t→∞

1
2t
ln
dΓi

T iΞT (t) iΞ(t) i dΓi

dΓi i dΓi

= 1
2t
ln
dΓi

T • exp[2λit]1• dΓi

dΓi • dΓi

= λi , i = 1,...,2DCN

 (2.5.6) 

 
(Note: the transpose matrix not only transposes the rows and column it also transposes 

time ordering, 
 
ΞT (Γ;t) = expR ds TT (SsΓ)

0

t

∫( ) .) 

By convention the exponents are ordered such that λ1 ≥  λ2 ≥ . . . ≥  λ2DCN . It 

can be shown that the Lyapunov exponents are independent of the metric used to 

measure phase space lengths. They are also independent for T-mixing steady states 

(see Chapter 6) of the initial position  Γ  of the “mother” phase space trajectory.  

In general there will be a number of Lyapunov exponents that are zero. For 

example there will 2DC  zero exponents for each Cartesian momentum component 

that is conserved since momentum conservation also means that the associated 

position of the centre of mass of each Cartesian coordinate is constant. In autonomous 

systems there will be another zero exponent associated with time translation 

invariance. In isokinetic or isoenergetic systems there will each be another zero 

exponent associated with this additional constant of the motion. To keep the notation 

flexible we will say that there are f  zero Lyapunov exponents. 

In order to calculate the Lyapunov spectrum, one does not normally use 

(2.5.5).  Benettin et al. developed a technique whereby the finite but small 

displacement vectors are periodically rescaled and orthogonalised during the course of 

a solution of the equations of motion [25, 26].  Hoover and Posch  [27] pointed out 

that this rescaling and orthogonalisation can be carried out continuously by 

introducing constraints to the equations of motion of the tangent vectors [28].  With 

this modification, orthogonality and tangent vector length are maintained at all times 

during the calculation in much the same way as our thermostats and ergostats 

maintain fixed values for the kinetic temperature or the internal energy. 

In theory, the 2DCN  eigenvalues of the real symmetric matrix  Ξ
T (t) iΞ(t)  

can also be used to calculate the Lyapunov spectrum in the limit t→∞ .  Since 
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 Ξ(S
tΓ)  is dependent only on the mother trajectory,  StΓ , calculation of the Lyapunov 

exponents from the eigenvalues of  Ξ
T (t) iΞ(t)  does not require the solution of 2dN 

tangent trajectories as in the methods mentioned in the previous paragraph. However, 

after a short time, numerical difficulties are encountered using this method due to the 

enormous difference in the magnitude of the eigenvalues of the  Ξ
T (t) iΞ(t)  matrix3.  

The use of QR decompositions (where where  Ξ(t) =Q iR  and R  is a real upper 

triangular matrix with positive diagonal elements and  Q  is a real orthogonal matrix) 

reduces this problem [24, 29].  Use of the QR-decomposition is equivalent to the 

reorthogonalisation/rescaling of the displacement vectors in the scheme discussed 

above [30]. 

We note that the Lyapunov exponents are only defined in the long time limit 

and if the simulated nonequilibrium fluid does not reach a stationary state, the 

exponents will not converge to constant values.  It is useful for the purposes of this 

work to define time-dependent exponents as:  

 

 
λi (t;Γ);i = 1,...2DCN{ } = 1

2t
ln eigenvalues ΞT (t;Γ) iΞ(t;Γ)( )( ) . (2.5.9) 

 
Unlike the Lyapunov exponents, these finite time exponents will depend on the initial 

phase space vector, Γ  and the length of time over which the tangent vectors are 

integrated, and we therefore will refer to them as finite-time, local Lyapunov 

exponents. 

The systems considered here are chaotic: they have at least one positive 

Lyapunov exponent.  This means that (except for a set of zero measure) points that are 

initially close will diverge after some time, and therefore information on the initial 

phase space position of the trajectory will be lost.  Points that are initially close will 

eventually span the accessible phase space of the system.   

The sum of the first two Lyapunov exponents shows how the fastest growing 

area grows.  The sum of the first three Lyapunov exponents gives the rate of growth 

of the fastest growing 3-volume grows,.. etc. The Lyapunov exponents of an 

equilibrium (Hamiltonian) system sum to zero, reflecting the phase space 

conservation of these systems.   

                                                
3 It rapidly becomes an illconditioned matrix. 
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The sum of all the Lyapunov exponents is in fact equal to the time averaged 

phase space expansion factor so that for isokinetic systems – see A2: 

 

 
  

λi
i=1

2DCN− f

∑ = lim
t→∞

∂
∂Γ

i !Γ
t
= lim

t→∞
Λt = − lim

t→∞
[DC (N −1)−1]α t . (2.5.10) 

 

This is because the phase space expansion is the average rate of increase of the 

ostensibly dimensioned phase space volume element. Comparing this equation with 

(2.4.11) shows that the sum of all the Lyapunov exponents gives the exponential rate 

at which the streamed phase space volume vanishes 

 

 
 
lim
t→∞

δVΓ(S
tΓ) = exp[Λt]δVΓ(Γ) = exp[ λi

i=1
∑ t]δVΓ(Γ) . (2.5.11) 

 

As we will see later, in equilibrium systems all properties including Lyapunov 

exponents, must be invariant under time reversal. This implies that time reversal of 

Lyapunov spectra for equilibrium systems must transform the spectrum into itself 

which in turn means that for all equilibrium systems, the exponents must arrange 

themselves into conjugate pairs that each sum to zero.  

 

 λmax
eq + λmin

eq = λmax+1
eq + λmin−1

eq = ...= 0   (2.5.12) 

 

If the ostensible phase space dimension is odd, the unpaired exponent must be 

zero. In fact there could be multiple exponents that are zero since this would not 

violate the time reversal property.  

The symplectic eigenvalue theorem shows that for all autonomous symplectic 

dynamical systems with time independent Lyapunov exponents the conjugate 

exponents must pair about zero as in (2.5.11). If the system is stationary in time, this 

pairing about zero can only happen if the system eventually relaxes towards 

equilibrium. 

Equation (2.5.10) also shows how Lyapunov exponents are related to time 

averaged dissipative fluxes and thereby to transport coefficients.  We define a 
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nonlinear transport coefficient in terms of the long time average of the dissipative flux 

divided by the dissipative field as  

 

 L(Fe ) ≡ − lim
t→∞

Jt
Fe

 (2.5.13) 

Definition 

Then using equations we see derive what is known as the Lyapunov Sum Rule which 

for an N-particle isokinetic systems reads: 

 

 LN (Fe ) = −
λi

i=1

2DCN− f

∑
(DC (N −1)−1)Fe

2VkBT
. (2.5.14) 

 

For homogeneously thermostatted symplectic systems, Evans, Cohen and 

Morriss showed in 1990 that the Lyapunov spectrum has a conjugate pairing 

symmetry about the time averaged value of the thermostat multiplier so that the 

nonlinear transport coefficient can be calculated by summing any conjugate pair of 

Lyapunov exponents. Since the largest and the smallest exponents are the easiest to 

compute, for such systems we can write: 

 

 LN (Fe ) = − (λmax + λmin )
Fe
2VkBT

 (2.5.15) 

 

Definition 

This relation (2.5.14), is called the Conjugate Pairing Rule for homogeneously 

thermostatted adiabatically symplectic systems. 

Equations (2.5.14,15) show how apparently abstract mathematical quantities 

such as Lyapunov exponents which characterize the stability or otherwise of phase 

space trajectories, are related to measurable physical properties such as transport 

coefficients. 

For thermostatted steady states, the Lyapunov sum is negative.  This indicates 

that the phase space collapses onto a lower dimensional attractor in the original phase 

space.  The set of Lyapunov exponents, can be used calculate the dimension of the 

object whose volume is preserved by the dynamics.   
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Definition 

This dimension is called the Kaplan-Yorke dimension defined as  

 

 DKY ,N ≡ NKY + λi
i=1

NKY

∑ / λNKY +1 ,  (2.5.16) 

 

where NNKY
 is the largest integer or which λi

i=1

NKY

∑ > 0 .  As you sum the Lyapunov 

exponents from the largest to the smallest you start by summing at least one positive 

number – because the system is chaotic.  If the system satisfies the Second Law of 

Thermodynamics the time averaged thermostat multiplier is positive indicating that on 

average work is converted to heat that must be removed by the thermostat in order to 

maintain steady state conditions. From the Lyapunov Sum Rule, (2.5.13) we see that 

summing all the Lyaponov exponents gives a negative number.  Somewhere during 

the summation process the running sum changed from being positive to negative.  

Using linear interpolation between the integer exponents, the Kaplan-Yorke 

dimension is the dimension of that object whose volume is preserved by the 

dynamics. 

 In the linear response regime close to equilibrium there is an exact relation 

between the Kaplan-Yorke dimension of the steady state and the zero field transport 

coefficient for an N-particle system: 

 

 LN (Fe = 0) = limFe→0
(2DCN − f − DKY ,N (Fe ))λmax,N (Fe )kBT

VFe
2   (2.5.17) 

 

In this limit the dimensional reduction is less than 1: 2DCN − f − DKY ,N (Fe ) <1 .  

 These remarkable equations show not only how to calculate the dimension of 

the invariant steady state attractor but how this dimensional reduction is related to a 

physical property, namely a transport coefficient. 
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2.6 ENTROPY IN DETERMINISTIC NONEQUILIBRIUM STATES. 

 
The fine-grained Gibbs entropy SG , is defined as (see §5.6 for a discussion 

about why this quantity is useful at equilibrium): 
 
 

 
SG (t) ≡ −kB dΓ

D
∫ f (Γ;t)ln f (Γ;t)]  (2.6.1) 

 
We do not discuss why entropy is defined in this way.  We will however, explain why 

this quantity is so problematic in deterministic nonequilibrium steady states. From the 

discussion of Lyapunov exponents and the Kaplan-Yorke dimension we know that the 

nonequilibrium density is distributed in a space of lower dimension than the 

ostensible phase space dimension, 2DC (N −1)−1 .  This is analogous to condensing a 

density from a two dimensional area onto a one dimensional line. When the entropy is 

defined as above the integral is to be taken over the ostensible phase space, D.  This is 

highly problematic because almost everywhere in phase space the density measured 

with respect to the ostensible dimension is zero!  

The fact is that you can only calculate the entropy if you know the dimension 

and the topology of the invariant measure – that object that is preserved by the 

dynamics. However the dimension is only known approximately and the topology is 

not known at all. 

If we use the phase continuity equation we can attempt to calculated how this 

fine-grained entropy changes in time for an isokinetic system: 
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!SG (t) = −kB dΓ [1+ ln( f )]∂ f
∂t∫

= kB dΓ [1+ ln( f )] ∂
∂Γ∫ i [ !Γf ]

= −kB dΓ f !Γ i
∂
∂Γ∫ [1+ ln( f )]

= −kB dΓ !Γ i
∂ f
∂Γ∫

= kB dΓ f (Γ;t) ∂
∂Γ∫ i !Γ(Γ,t) = −kB(DC (N −1)−1) α (t)

 (2.6.2) 

 
In a nonequilibrium steady state the entropy apparently diverges at a constant 

rate towards negative infinity! If there are no thermostats as in an autonomous 

Hamiltonian system, the fine grain Gibbs entropy is simply constant. 

Now we consider an autonomous Hamiltonian system that has some arbitrary 

initial distribution. We know from the streaming form of the phase continuity 

equation (2.4.1) that  f (S
tΓ;t) = f (Γ;0) . This is because 

 
f (SsΓ;t) = exp[− ds

0

t

∫ Λ(SsΓ)] f (Γ;0)  and for Hamiltonian dynamics  Λ(Γ) ≡ 0 .  We 

use (2.6.1) to calculate the entropy at some time t. 

 

 

 

SG (t) = −kB dSt∫ Γ f (StΓ;t)ln[ f (StΓ;t)]

= −kB dSt∫ Γ f (Γ;0)ln[ f (Γ;0)]

= −kB d∫ Γ
∂StΓ
∂Γ

f (Γ;0)ln[ f (Γ;0)]

= −kB d∫ Γ f (Γ;0)ln[ f (Γ;0)]= SG (0)

  (2.6.3) 
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The first line uses  StΓ  as a dummy integration variable in (2.6.1). The second 

line uses the streaming phase continuity relation for Hamiltonian systems. The fourth 

line uses the fact that the Jacobian in line 3 is, for Hamiltonian systems, unity. 

Because the entropy is so problematic in nonequilibrium systems, it will play 

no role in our discussions of nonequilibrium phenomena. We will meet it again when 

we discuss equilibrium systems in chapter. 
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2.7 AN HISTORICAL ASIDE: COINCIDENCES? 

 
 It took 45 years for the Boltzmann equation to be solved.  When it was solved, 

it was solved simultaneously and independently by Chapman and by Enskog in 1917!  

The solution was obtained by slightly different methods but what is now called the 

Chapman-Enskog solution of the Boltzmann equation is in fact David Enskog’s 

adaptation of Sydney Chapman’s solution. 

 The first time reversible deterministic algorithm for the linear response of 

adiabatic planar Couette flow namely the Dolls tensor algorithm, was proposed by 

Hoover et al. in 1980.  The Sllod algorithm for adiabatic planar Couette flow far from 

equilibrium was proposed by Evans and Morriss in 1984. 

 Two very similar algorithms that are, for heat flow the analogs of the Dolls 

tensor for shear, were proposed simultaneously but independently by Gillan and 

Dixon, and separately by Evans in 1982.  The more complex to implement, Gillan-

Dixon algorithm, has since been rarely used but the two algorithms are closely 

related.  The Gillan-Dixon algorithm which is exact for the linear response violates 

AIΓ. 

 Amazingly, in the same year, 1982, time reversible deterministic thermostats 

were developed simultaneously but independently by Hoover in California and Evans 

in Australia. These discoveries (the Gaussian thermostat by Hoover and the Gaussian 

ergostat by Evans) were made within one week of each other! 

 In 1990 the first practical connections between chaotic measures and 

thermophysical properties were made by Evans, Cohen and Morriss with the 

Conjugate Pairing Rule and independently by Gaspard and Nicolis with the Escape 

Rate Formalism. 

 It seems that an idea has its time and when that time comes so does the idea. 



 36 

A2 Appendix 

 Here we consider the slightly tricky issue of computing the exact phase space 

expansion factor for Gaussian isokinetic dynamics. We treat the isokinetic case 

because it is a little more tricky than the Nosé-Hoover case. 

 For simplicity consider a 3 dimensional N-particle system obeying the 

following dynamics: 

 

 

 

!qi =
pi
mi

!pi = Fi (q)−αpi

α =
Fi ipi

i=1

N

∑

pi
2

i=1

N

∑
,

  (A2.1) 

	
   	
  	
  

As always the momenta are peculiar so 

 

 pi
i=1

N

∑ = 0   (A2.2) 

 

With this choice for the thermostat multiplier the peculiar kinetic energy is also 

constant 

	
  

 p(t)i
2

i=1

N

∑ / 2m = K ,∀t   (A2.3) 

 

 The 4 constraints (A2.2,3) imply that the 3N Cartesian momentum 

components are not all independent so one cannot compute the usual phase space 
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expansion factor  

	
  

 
  
Λ = ∂

∂Γ i !Γ(Γ) = ∂
∂pi

i −αpi
i=1

N

∑   (A2.4) 

 

where we have assumed AI Γ . The difficulty is that, in general, you cannot vary one 

Cartesian momentum component keeping all other 3N −1 components fixed and still 

satisfy the constraint (A2.2).   

 We resolve this situation by effectively eliminating the degrees of freedom 

associated with the Nth particle and we compute the phase space expansion factor as, 

 

 

Λ = ∂
∂pi

i −αpi
i=1

N−1

∑

= −(3N − 3)α − pi i ∂∂pi
α

i=1

N−1

∑

= −(3N − 3)α − pi i ∂∂pi

Fj ip j + ( Fj ) i ( p j )
j=1

N−1

∑
j=1

N−1

∑
j=1

N−1

∑

pj
2 +

j=1

N−1

∑ ( p j )
2

j=1

N−1

∑i=1

N−1

∑

= −(3N − 3)α −
Fi ipi + ( Fj ) i ( pi )

i=1

N−1

∑
i=1

N−1

∑
i=1

N−1

∑
2mK

+2
Fi ipi + ( Fj ) i ( pi )

j=1

N−1

∑
j=1

N−1

∑
i=1

N−1

∑
(2mK )2

[ pi
2 +

i=1

N−1

∑ ( pi )
2

j=1

N−1

∑ ]

= −(3N − 4)α

  (A2.5) 

 

	
   	
  In calculating this derivative we still have one constraint. However the two 
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terms involving the partial derivatives: 
 

∂
∂pii=1

N−1

∑ ipi  and 
 
pi i ∂∂pii=1

N−1

∑  are 

independent of the value of the peculiar kinetic energy. So although the virtual 

displacement taken in the derivative violates the kinetic energy constraint, the answer 

that is computed is independent of the value of the kinetic energy. In fact one could 

transform to a normalized momentum p 'i  for which the scaled kinetic energy could 

not vary. The results so obtained are still given by (A2.5) because 

 
∂
∂pii=1

N−1

∑ ipi = ∂
∂p 'ii=1

N−1

∑ ip 'i  etc.    

 The same calculation for Nosé-Hoover thermostats in the phase space 

extended to include the thermostat multiplier α  shows that in that case the phase 

space expansion factor is −(3N − 3)α  because the second term in the second line of 

(A2.5) is absent. 

 

 

 


